
Basic Equations

Chapter 2

2.1 Introduction

2-1

Basic Equations for Thermalhydraulic Systems
Analysis

2.1. I Chapter Content

This chapter presents the basic mass, momentwn and energy equations used in typical computer codes for
thermalhydraulic simulation. The equations are derived from first principles and the necessary
approximations lead to the requirements for empirical correlations. Closure is obtained by the equation of
state.

The known territory of the basic mass, energy and momentum conservation equations (Bird et al [BIR60])
is explored, herein, from the perspective of thermalhydraulic systems analysis for nuclear reactors.

Invariably in the modelling of fluids, the conservation equations are cast in one of two main forms (Currie
[CUR74]): integral or distributed approach, as illustrated in figure 2.!. The differential form sees infrequent
use in the analysis of thermalhydraulic systems since the cost and complexity of such a detailed analysis on
even a single complex componem ofa system is enormous. which mekes this route to the analysis ofsystems
ofsuch complex components unrealizable. Recourse is generally made to the integral or lumped form so that
inter-relationships ofvarious components complising a system can be simulated. Necessarily, the models
used forthe individual components are much simpler than that ofthe detailed models based on me distributed
approach. Great care must be taken to ensure that the simpler models of the integral approach are properly
formulated and not misnsed.

It behooves us, then, to develop the models used in thermalhydraulic systems analysis from first principles.
This will provide a traceable and verifiable methodology to aid development and validation ofsystem codes,
to elucidate the necessaty assumptions made, to show pitfalls, to show the common roots and genealogy of
specific tools like FLASH [POR69], SOPHT [CHA75a. CHA75b, CHA77a, CHA77b, SKE75, SKE80],
RETRAN [AGE82], FIREBIRD [LIN79], CAUrENA [HAN95], elC., and to help guide future developmenr.
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2.1.2 Learning Outcomes

Thc o\'erall objectives for this chapter are as follows:

2-2

Objective 2. I The student should be able to idcntify the terms and symbols used in
thennalhydraulics.

Condition Closed book written examination.

Stancard 100% on key terms and symbols.

Related Fundamental hydraulic and heat transfer phenomena.
concept(s)

Classification Knowledge Comprehension Application Analysis SynL"esis Evaluation--
Weight a a

I
Objective 2.2 The student should be abie to distinguish between the differential and integral form

and be able to choose. w;thjustification.the correct fonn to use in v~.rious situations.

Condition Closed book written or ora! examinatioll.

Standard 100%.

Related Mathematical fonns of the conservation equation.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a

Objective 2.3 The student should be able to recall typical ':alues and units of parameters.

Condition Closed book written or oral examination.

Standard 100% on key terms and symbols.

Related
concept(s)

Classification Kno\vledge Comprehension Application Analysis Synthesis Evaluation

Weight 3
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,
I

Objective 2.4 The student should be able to recognize key physical phenomena.

Condition Open book written or oral examination.

Standard 100°,10 on key items. supporting material used only as memory triggers.

Related
concept(s)

Classification Knowledge Comprenension Application Analysis Synthesis Evaluation

Weight a

Objective 2.5 The student should be able to recogr,ize the coupling bctween
~

mass. momentum.
energy and pressure in thelln3lhyd~aulic svstem,.

Condition Closed book wTitten or oral examination.

~,.mw
100%.

Related
concept(s)

Classification I Knowledge Comprehension Application Analysis Synthesis Evaluatiop.

Weight a

--
Objective 2.6 The student should be able to choose approximations as appropriate (# of dimcsions.

transient Or steady state, averaging, ,;patial resolution. etc.) with justification.

Condition Open book \\Titten or oral examination.

Standard 75%.

Reiated
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis IEvaluation

Weight a a a a Ia

2.1.3 The Chapter Layout

The exploration proceeds by first establishing and discussing the general principle of conservation. Next.
this general prir.ciple is applied in turn to mass, momentum and energy to arrive at the specific forms
commonly seen in the systems approach. Closure is then given via the equation of state and by supporting
~mpirical correlations. Finally. the ideas developed are codified in a diagrammatical representation to aid
in the physical interpretation of these systems of equations and to provide a summary of the main
characteristics of lluid systems.



Basic Equations 2-4

2.2 Conservation

We start. both historically and pedagogically. with a basic experimental observation:
"CONSERVAnON"

This was. and is. most easily understood in terms of mass:
"WH."T GOES IN MUST COME OUT UNLESS IT STAYS THERE

OR IS GENERATED OR LOST SOMEHOW"_
Although this should be self- evident. it is important to realize that this is an experimental observation_

(I)I ff rdV + II s· II ds
v s

If we further ".ssume that we ha\'e a continuum. we can mathematically recast our basic exp~rimental

observation fur any field ,-ariable. 1jI:

gt ff I IjIdV
v

where
D/Dt

V
r

tV
t
S =
0

S

substanti31 derivative l = change due to time variations plus change due to movement in
space at the velocity of the field variable. 1jI.
arbitrary tluid volume.
net sum of local ,ourees and local ,ink, cfthe field variabk. 1jI. ",thin the volume V.
field variable such as mass. momentum, energy, etc.,
time,
surface bounding the volume. V.
writ Vector normal to the surface. and
net Sum of local sources and locai sinks of the Buid variable. 1jI. on the surface s.

We can now use Reynold's Tran,port Theorem (a mathematical identiiy discussed in detail in appendix 2):

D

Dt
IfI IjI dV

v
III a,!' dV +

at
v

If\jJv'nds, (2)

where

to give

.a/at = local time derivative. and
v ,-e!ocity of the tield variable.

IfI ~;, dV = - If IjI v . II ds ' IIf r d V + If s· n ds .
s v S

(3 )

In words. this states thatlhe change in the conserved field variable IjI in the volume V is due to surface Bux
plus sources mip-us sinks. We can use another mathematical identity (Gauss' Divergence Theorem):

Da
t For a lucid discus, ion of the three time derivatives.

at
~. see [BIR60. pp 73-74],

at dt

reproduced as appendix 1.
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where

!J A' ods,
Iff 1]. AdV.

v

, ­
--)
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A any vector. such as velocity, and
I] Del operator (eg. I] = a/ax i + a/ay j + ...).

Thus equation 3 can be rewritten: •

Iff ~; dV = - ffI 1]'ljIvdV - jJr fdV • Iff I]·SdV
v s v v

If we asswne that this statement is universally true. i.e. rOi any volume
consideration. then the following identity must hold at each point in space:

aljl = -V IjIv + r + I]·s.
at

within the system I.lndt:r

(6)

.J

This is the distributed or microscopic form. Equation 3 is the lumped or macroscopic limn. They are
equivalent and one can move freely back and forth bet',\'~~n the two forms a$ long as the tie!d \'ariables are
continuous.

The aoove derivation path is not unique. One could start with an incremental voiume and derive 1I) via lG).
It is largely a question of personal choice and the end use. One school of thought. attended by most
scientists. applied mathematicians and academics, since they usually deal with the local Or microscopic
approach. focuses on th.. conversion of the surface integrals to volume integrals using Gauss' Theorem. The
\'olume integrals are then dropped giving the partial differential Or microscopic fOn!. This path works well
when a detailed anal)'sis is desired. such as subchannel flow in fuel bundles. moderator circulation in the
calandria. etc.

The second schooL which sees more favour among engineers. particularly in the chemical industry. e\'aluates
the surface integrals as they stand without con'.'erting to volume integrals. This leads to a lwupcd or
macroscopic approach useful for network analysis. distillation towers. etc.

rhere exists a very large number of possible derivations. each with its own advantages and disad\·antages.
As more and more detail is picked up in each class of models. numerical means have to be used. [n the limit
of large numbers of nodes or mesh points. etc., both methods converge to the same solution.

Since the above equations 3"e basic to all subsequent modelling of thermalhydrwlic systems. one should
keep in mind the basis for these equations:
I) Conservation as 3n experimental observation.

This is uSllally takt:n for granted. However. when the conser.-ation equations for separate phases in
a mixture an: under consideration. the various sinks and sources ofmass. momentwll and energy are
not entirely kno\\n and the interpretation of experimental data can be difficult because of the
complexity. It helps to keep in mind the distinctly different roles that we ha\'e historically 3ssigned
to the p13yers in the conservation process:
a) the local time derivative. aljlial.
b) the advection term (flux). 'J·ljIv .
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2)

c) the local sinks and sources, r, within a volume and
d) the local sinks and sources, S. on the surface of a volume.
If a clarity of fonn is "dopted by establishing and maintaining a one-to-one correspondence
between the form and the physical processes. then a substantial pedagogical tool will have been
achieved. This proves invaluable in experimental design (to zero in on a panicular process or
parameter). model formulation ,nd interpretation. data analysis and presentation. correlation
development. etc. A model c'luld lose its generality because. for instance, fluxes across interfaces
are written as a tenn in r. thus making the interfacial flux a local phenomena rather than a boundary
phenomena. This may be acceptable for a single geometry but causes the model to break down when
applied to diverse geometries.
The field variables are continuous within the volume V.
This is also usually taken far granted. But care must be exercised in multiphase now where dis­
continuities abound. A COnL'llOn approach, taken to simplify the complexity of multiphase flow. is
to average the tenus in the conservation equations across the cross-sectional area of the flow path.
One could speculate that the error introduced in this manner could separate the mudel from reality
enough to make the solutions be "Wlfeal", i.e. complex numbers, singularities, etc. Further.
fluctuating parameters arc often smoothed by averaging over an appropriate Ll.t. These averaged
parameters and products of parameters are used in models "nd compared to experiments. But there
is no guararltee that. for in.5tancp..

I [I )11' \Ll.t J ljI v d t = Ll. t J ljI dt l~ J v d t
J
I .

al t..t ~t

Thus the use of time averaged parameters can lead to additional errors. Indeed. because of the
possibility oferror due to space and time discontinuities, several investigators have offered rigorous
treatments for the distributed approach (see, for example, Delhaye [DEL8l D. There is no reason
why these treatments could not be applied to the lumped approach, as well. But. at this time. there
i~ little incenti\'e to do so since grid coarseness and experimental data are larger sources of error.
As always, the opemtive rule is - BUYER BEWARE.
We now proceed to treat the mass. momentum and energy equations in tum.

2.3 Conservation of Mass

Historically, mass was the first variable observed to be conserved:

-JJ Yk P, v k n ds T

S

(7)

where
Pk density of phase k (I = liquid. 2 = vapour),
Y, volwne fraction of phase. k. in volume V. and
r,. S, phase sinks and sources, including chemical and nuclear effects.

The average density is defined as:

(1 - a) PI + a P, ' (8)

)

where
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p
a

average density, and
void fraction.
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+fffW, + [',)dV +ff(5,
v s

Adding both phases together. equation 7 becomes:

J'fJr 0- [( 1 - a) p + a p_,] d Vat I
v

- ff [(I - a) p, v, - ap, v,], n ds
s

5,) . n ds.
(9)

In our case. [', = - [', (liquid boils or vapour condenses) rond S, = 0 (no mass sources or sinks ai surtace~ /.
Therefore:

v."here

fff
v

op dV 0

at
p v . n ds (10 )

'"
-,j

If we apply Gauss Theorem and drop the integrals we have:

ap + '1· P v = 0
at

or

c1p
--::;- [(I - alp, - ap,] - '1'[(1 - a)p,v, + ap,v,] = O.
o.

( II )

( 12,

( 13)

This is the distnbuted form useful for modelling detailed now patterns such as in the calandria. vessels.
'team generators and headers. Component codes such as THIRST [CAR8Ia] and COBRA [BN\V76] use
this approach.

In contrast. system codes such as SOPHT [CHA77aJ. based on Porsching's work [POR71]. use the lumped
equations. These codes represent a hydraulic network of pipes by nodes joined by links. discussed in detail
in chapter 3. Mass. pressure and energy changes occur at the nodes. Momentum changes occur in the links.
Thus the network is treated on a macroscopic scale requiring an integral approach to the fundamental
equations. Flo\\' details in pipes are not considered. Th2[ is, diffusion. dispersion, advection. now regimes.
llo\\' profiles. etc. are not fundamentally accounted for but are covered by empirical correlations. Averaging
techniques. conunonly used in the distributed approach are not used in the lumped approach mainly because
there is little incenti\"e to dL) so. The main sources of error lie elsewhere. mainly in the coarseness of the
disaetiZ<1tion in the direct;L)n of no\\' (i e. node size) and in li'iction factors and heat transfer coefficients.

",0\\'. ff f pdV is the mass. 'd.. in ,he volume. V,. of the i'h node. Aiso. for our case. the surface integral can
be \\Tillen as surlace integrals over the individual now paths into and out of the \"olume or node. That is.
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(14 ).J
-!fpv'nds

s

where j represellls innow and ournow links with v, > 0 for innow and <0 for outnow. Inherent in equation

11 is the assumption that the integral. II p v . n ds can be replaced by the simple pwduct P, v, Ar This

s
implies know'l or assnmed (usually uniform) velocity and density profiles across the face of the link (or
pipe).

Thus we now have:

aM,

at ~ :L i'j vi"\ " L WJ ,
J

(15)

\\here W, is the moss now. This is the typical representation in system codes. Thus for the node-link type
equations, we must add two more assumptions:
i) nodalization, and
ii) assumed velocity and density profile across the cross- section of a pipe.

These assumptions have far reaching ramitications th': m,y not bc immediately obvious. This is discussed
in "lore detail in chapter 3.

To concludc our progressive simplification, we note the steady state [arm of equation 15:

L Pj v/\ " L Wj = O. (16)
J

For a simple circular now loop. the mass now rate at steady state is a constant at any point in the loop. Local
area and density \"ariations thus give rise to \"elocity variations around the loop.

Local veloci!) thcn is:

2A Conservation of Momentum

W
V :::

pA
(17)

~~\\10n obsen"ed that momentum is l:onserved. i.e. a body mov~s in 2. straight line unless forced to do
othef\\"ise. This is equi\'alent to a force balance if the inertial force (a momentum sink ofsorts) is recognized.
In the illlegral sense. the rate of change of momentum is equal to the forces acting on the nuid. Thus:

where

D

Dt
III y, P, v\ dV =

v
II

s v v
( 18)

and

o is the stress tensor (i.e.. short range or surface effects including pressure. viscosi!)'. etc. I.
f is the long range or body force (i.e.. gravity).
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M is the momentum interchange function accounting for phase change effects.
Using Reynold's Trans!'ort Theorem. we get:

Ilf :t (Y, P, v,)dV • II (Y, P, v,)(v,' n)ds

" S

= II ",'nds + IiI Y, P, f, dV • III M, dV.
s v v

Adding both phases together as per the mass equation, we tind:

III ~l P v dV • If P v (n) ds = fJ IJ . n ds + IfJP f d V .
v 5 5 v

2-9

( 19)

(20)

(21 )

To get the microscopic form we use Gauss~s theorem and drop the \o!utlle integral as bt"fOle to h~a\'e:

a- Cp,). v'pvv = V'CT + pf.
at

The stress tensor. a. can be split into the nonnal and shear components:

a = - PI T t. (22 )

where P is the pressure. I is the tmity tensor al,d r is the shear stress tensor. Tllis enahles the explicitu>e of
pr~s:;ure and helps mail'ldin our tenuous link with reality. Of course. it can equally be introduced ill thc
integral Conn. equation 20. or as a separate pressure fur each phase in eqllotion !9. At any rate. equation 21
becomes:

a
- (pv) + \l'pvv = -\lP + '/'T + pf.
at

(23)

This is the fonn commonly seen in the literature. useful for distributed modelling as per the mass
,'onservation equation. The tenn. \7·T. is usually replaced by an empirical relation. For the system codes
using the node-link structure. we switch back to the macroscopic form. Equation 20.

If the surface integral for lhe ad, eClive tenn is perfonned over the inlet and outlet areas of the pipe (link) in
question. then:

IIpV(V'll)dS =

S

fIpV(V'l1)ds+II pv(v'nlds,

AI" -\OLT

(2-1 )

where A IN is the tlO\\' inlet :.li"ca and AOl'T is the flo\\" outlet area. If \\'c assume the properties are constant
l)\'er the areas. then:

Altemativeiy we could perform a cross-sectional average of each tenn. usually denoted by < >. where

« » = 1/ A II ()ds. If we assume the properties. V. P and A are constant along the length of the pipe,
s
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then the second and third tenUS cancel.

,J
""""" Equat:on 25 can be rC\\Titten as:

2-10

v op v

at -ff PI· n d s .. fJf {V': .. p nd v
s v

-AOUT Pour + A 1N Pour - VLP (f~ .. k) ~i;~ -LAp sin(8)g/g•.

{26}

\\"h~re g., is the gra\'itational constant. g is the acceleration due to gravity and whece ,-.• and pC evaluated by
e'l",piricalc.;orrelations (the standard fricticn factor) plus an elevation change tenn (0 is the :Ingle \V.r.t. the
horizontal). Note that is Aom l' Am rhen, even for constant pressure, there is a net force on the volume
causing it to accelerate if it were not restrained. [n a restrained system such as l-ITS piping, the piping
supports exert an equal and opposite force on (h~ volume. Tiu.:s when the area differences are explicitly
modelled. the appropria!e body forces must be included. Generally,:t is simpler to use an average or
representative area for the IN and OUT surfaces and to add entrance "nd exit frictiunallosses explicitl) in
the (tl/D+k) tenn.

Assuming one dim.ensionat now and defining the mas,;; now as W '" PVA. and L as the pipe length. equation
26 becomes:

oW
at (

fL ~
- Pour) - - + k I

\ D ) 20 pA 2
'='c

- A P g/gc sin(tl). (27)

(28)

which is the form typically used in system codes.

Ifcircumstances require. ~xtr:1 tenns can be added. For instance. if a pump is present this can be \:onsidered
to b~ an external force acting through head. ~p?ump' Equation 27 would then hecome:

aw
L at = A OUT POUT - All" P1:\ .,. A Li Ppump + .. , .

The momentum nux temlS (Apv~) in equation 25 could also be added if large area or property changes \\"ere
present or the effect could be included in the friction teml.

rn the steady state. for a constant area pipe WIth no pump and no elevation change:

(
fL ) V ~ ( fL ) W 2

PIN - POUT = P D' k 2g = D'" k ') A ~ 0

-c - P ~c
(29)

As a tinal note. the assumptions made for the mixture momentum equation are thus similar to those made
for the mixture mass equation and the same conunems apply. One carulOt hope to accurately model such
phenllmena as \'oid propagation and other two phase transient now effects llsing lumped single phase
<:quations l.mles~ a larg.e number of nodes and links are used.

.,1
.'
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2.5 Conservation of Energy

2-1 I

By the early 1800·s. philosophical jumps were made in recogllizing that heat was not a substance and in the
emergence of electromagnetic theory. The concept of energy as we now think of it was fonnulated and it
was found that energy. too. was conserved. as long as we carefully identitY all the different forms of energy
(kinetic. chemicaL potentiaL nuclear. internal electromagnetic.... ).

The mathematical statement of the conservation of energy is:

D
Iff re, I 'J -ff q,'nds . IF E, d V- Y, P, + "2 v, dV =

Dt J J
V 5 V

. Iff y,p,f,'v,dV +ff (o,·n)·v,ds.
v s

(3GI

where
e, internal energy of phase k.
~ surface heat flux for phase k. and
E, internal heat sources and sinks of phase k.

The left hand side is the substantial derivative of the internal plus kinetic energy. The right hand side te,ms
are. r~spectively:

I) surface heat flux.
2) internal sources and sinks.
3) work due to long r:mge body forces (gravity. etc.).

~ ~) work due to short range forces (surface tension. pressure. etc.).

Using Reynold's Transport Theorem again:

v ~) v . II ds
2 k I..

(311

= - II q,' II ds + IliE, dV • III Y, P, f,' v, dV • II (0,' II)' v, ds.
s v v s

SUllU1ling over k. the mixture equation becomes:

IIf ;~t [p e + ~ Pv' 1dV - If Pe - 0 P v' J! v . " ds
v J s

where

-Ifq'"ds+
S

IfI EdV +

v
III P f v dV

v

- If (o·v)·vds.

s

(32)

l'sing Ciauss' Th~orem to change some of the surface integrals to \'olume integrals:
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(33)

vv

-ffq·nds
s

ff{ :t [p e " ~ p v' ]dV + f{ p e v· n d s + II£\7. [~ P v' v] dV

+ fffEdV" fffpf-vdV + fffV·(O'v)dV.
v

Since
O=-P(+"

JfJ v'(o"/) dV = ffJ [V'Cr '\') - V'(Pv)j dV.
v v

This is the totai energy equalion, composed of thermal tenns and mecnanical terms. We can separate the two
by tirs! generating the mecllJ:1ical terms from the momentum equation (equation 10). FOlTIling the dot
product with velocity we get:

-ffJv· VP dV + If.( p f-v d V ,
v v

JJJ a (p\')'vdV
atv

+ fff "'(v'pvv)dV = fff v'(V") dV
v v

(34)

Now

(35)

v . v P = v· (P v) - P v .v , (36)

a
V'-

at
(p v) = ~ ( ~ p v . v) = ~ (~ p v')at 2 at 2

(37)

and

v'(V'pvv) = v.( ~ pv'v), (38)

Using these identities and subtracting equation 34 from equation 33. we get:

"Iff Ed V + Iff 1:: Vv dV - Iff P\7' v d v,
v v v

fII
v

a- (pe)dV
at + ff pe v· n ds = - If q' n ds

s
(39)

This is the thennal fonn ortlle energy equation, This fonn of the energy equation can be used to generate
the thennal conductance equation for solids. By setting t1uid velocity to zero and converting surface integrals
to ,'olume integrals we get the distributed form:
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a (pe) = -Y"q + E.
ct

where E is the intern21 energy generation rate tenn.

From thennodynamics. for solids, we have:

2-13

(40)

o- (pe) = p
at

and using Fourier's la'.\' for heat conduction:

oe aT= p C,ot ot (4 I)

q = - kY'T.

we have the classical form of the heat conduction equation:

pC, ",T ~ Y"i-:Y'T + E
ot

(42)

= k v' T ' E for spa~e independent k. (43)

fhis is u5eful for detemlining the temperature distributions in boiler tube walls. piping walls and reactor fJeJ
pencils. To generate the r.ode-link forms we now turn back to the integral f9= of equation 39. If we
assume lhatthe density and enthalpy are unifoI1!1 over the node (the volume in que£tion), then

Iff
v

a-(pe)dV
at

au
at (44)

U, Vpe = LApe.

The integral of the transport [enn can be \\Titlen over the now surfaces:

II pev'nds = If pe"'ods + If pe"'nds'
s :\1 :\~

(45)

(46)

where AI_ A~. etc .. are the pipe flow cross-sectional areas. For inflow. v'n is neg;:uive. For outtlow. v'n is
positi\·e. ,\ssuming uniform velocity, enthalpy and density across !he link (pipe) cross-section gi\'es:

If pev'uds = - I: pe" A ~ pev A, ,
1:\ FLO\\ UUT FLOW

5 (47)

-I: WI" e lN
+ I: WOCT eOUT

The heat nux and generation terms of the themlal energy equation can be iumped into a loosely defined heat
source for the volume.

:J
.,/'

-If q'uds - ffl EdV - Q.
s v

Therefore. the thermal energy equation becomes:

(48 )
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°a~ 0> L W1:>i el~ ~ L WOlJ"r e OUT +- Q + fff t": \7 v d V - fff P V . v d V .
v v

The last two t~nlls are the ilTeversiblc and reversible internal energy conversion. respectively.

Some system codes track enthalpy rather than internal energy. Denning:

ho>emhalpy=e+P/p and H = Vph.

we can rewrite equatioG 39 as bllows:
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(49)

(50)

-III EdV + Ilf -c:'VvdV - I P'V·vdV.
\' v v

II.r a(p h - P) d \' rl- ~ (p:1 - P)"at
v

Collecting the pressure tenns and simplifying yields:

n ds -IJ q' n ds
s

(5I)

+ III!: Vv +- IIJ ~~ d V + II p v· n ds - JJJ P\!·" d V .
v v S v

II!
v

a (p h) d V ... ff p h v . n d sat s
-ff q' n ds

s
fIf E dV

v
(52)

The surface imegral OYer P can be transformed into a volume integral using Gauss' theorem and combined
with the last tenn to gi\'e:

II p v· n ds
~

rrf PV'vdV. J IfI v· (P v) dV
v

JfJ v·'VPdV.
v

IIf pv· vdV
\'

The enthalpy !lux tera:.s caa be evaluated in the same manner that the energy nux tenns were in equations
46-47. Thus.

II ph v· 11 ds = - L WIN hiS +- L \VOlT h()L:r

S

Finally. llsing equations 48. 50. 53 - 54, equation 52 becomes:

~l~

~ = + L W 11" hlN - L WOUT hOUT +- Qat .

+ Iff -c:'VvdV +- Iff (~~ +- v,vP) dV.
v v

(54)

(55)
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The integraltenu invol\'ing pressur, is olien neglected since it is usually negligible compared to the other
" tenus, For instance, the typical CANDU Heat Transport System operates at a pressure of 10 MPa, a fluid

,.~, vdocity of -10 mis, and a pressure gradient of less than 70 kPa/m, This translates into roughly 10 kJ/kg
"hie e is approximately 1000 kJ/kg,

The turbulent heating teml is usually approximated by adding pump heat as a specific foml of Q,
equation 55 in the steady state. negkcting turbulent heating and the pressure terms. is the familiar:

Q = :L WOUT hOUT -:L WIN hlN ' (56)

\

For a reactor or a boiler (one tlo'" in, one tlow out):

Q = W (lloUT - illN) 0 \V C.cr<JUT - TIN) in single phase,

Another special case of equation 55 is obtained by expanding the tenu Q as per equation 48:

-JIq'ods, fffEdV' Q,
s v

L~sing NC\\10n's Law of cooling for convection:

q'o=h,,(T-T),

where
q'a = heat tlux normal to snrface, s,
T = Temperature of fluid
T, Temperature of snrface (wall), and
h, heat transfer coefficient,

Equation 55, neglecting the pressure tenus, becomes:

, h 2P (' 2T)V £L - V " \' ape = V P C _
at at , at ' at

- ,.\h~(T - Ts} ,VE - IfI ::'C'v d\',
,

(57)

(58)

(59)

"hich is useful for accounting for heat transfer between the tluid and the pipe or tube ,,'ails leg: boiler hC:ll
transfer).

The heat transfer coefficient. h" is supplied through empirical relations, The turbuiem heating tenn
IIf t: 'V v d V generally can be neglected or added as a pump heat tenn,

v

2.6 The Equation of State

From the conservation equations. we have three equations for each phase (mass. momentum and energy
conservation) and fOllr UnkJl0\\l1S:

I) densit) _p or mass, Vp,
2) "elocity, v, or mass flow, W, or momentum, pv,
3) energy, e, or enthalpy, h = e + Pip, or temperature, T = fn(e) or fll(h), and
4) prcssure, P,
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).. '

The fourth cquation required for closure is the equation of statc:
P = fn(h,p) or p = fn(P.T). etc. (601

Thennodynamic equilibrium is usually assumed. For water. H,O or 0,0. tables of properties giYe the
requircd functional relationship. Often. a curve lit of the tables is used. This data is input to the computer
codes and utilized in table lookup schemes or directly \'ia the parametric curve fits.

The equation of state is discussed in detail in chapter 4.

2.7 Empirical Correlations

..\S pr~,,'iously discussed. suprorting relations are required to prodde the aecessary illlDmlat!On tor the
conservation and state equations. The primary areas where support is :leeded are:
I) relationship between quality and void fractions. i.e.. slip vel0cities in two phase tlo\\' (to link ~he

mass and enthalpy via the state equation);
2) the stress tensor, ,,(effects ofwall shear, turbulence, flo\\' regime and tluie properties on momentum

or, in a word: friction);
3) heat transfer coefficients (to give the heat energy transfer for a given temperature distribution in heat

exchangers. inch.:ding steam generators and r"actors):
,~ I therrU0dynamic properties for the equation of state:
5) tlo\\' regime maps to guide .he sdectior. of empirical C0rrebtions appropriate to the tlo\\' regime in

qucstion:
6) special component data for pumps, valves, steam df'.lffiS, pressurizers, bleed or degasser condensers.

etc: and
7) critical heat flux information (this is not needed for the solution of the process equations but a

measure ofengineering limits is needed to guide the use of the solutions of the process equations as
applied to process design:

The abO\'e list of correlations. largc enough in its own right. is but a subset of the full lis! tint would be
required \\"~re it not for a numb::r of key simplif:.~·illg assumptions made in the deri\'ation of the basic
equations. The tlu'ee major assumptions made for the primary heat transport system are:
I 1 one dimensional tlow:
2) thermal equilibrium (except for the pressurizer under insurge): and
3) one tluid model (i.e. mixture equations).
These are required because of state of the art limitations ,howe\'er, two l1uid models ae being used
increasingly in recent years.). Empirical correlations are discussed in more detail in chapter 7.

2.8 Solution Overview

I3crallsc of the complexity of solving the mass. momentum dnd energy equations plus supporting equations
llf state and empirical correlations all subject to initial and boundary conditions. it is quite easy to "not see
th~ forest for the trec~". A skeleton overview may help in this regard. Figure 2.2 illustrates the equations
and the infonnation links between them. In words. the momentum equation gives the tlows or velocities
Irom one node to another. or from one grid point to another. based on a given pressure. now. mass and
energy distributioa. The updated nows are used by the mass and energy equations lO upuate the mass and
~n~rg~y contents at each location. The new mass and energy are given to the equation of slate to update the
pr~ssllrc distribution. The new pressure. along with the n~w densities and energies are used by the
nwmentum equation. 'lIld so on. In this manner. a time history of the nuid e\'olution is obtained. OfcoUfse.

()\T£ACIf;'ThIi-IIlS~ .hlp! ""l! O<:cembcr 19.1997 11 ~
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only the main variables are noted. The numerous and diversp empirical correlations require updates on the
main variables and many secondary variables. This infonnatiun also "flows" around the calculation.

A further point to note on the solution overview is that each phase in a multiphase tlow has a main
infornlation tlow path as shown in ligure 2.3. In the full UVUEUP (unequal velocity, energy and pressure I

lllodeL there are two distinct phases: one for the vapour phasc and one for the liquid phase. If a simplilied
model was imposed, this essentially means that the planes would touch at some point. For instancc. ifequal
pressure in both phases was assumed. then figure 2.4 would result. Here, the equation of state is common
to both planes.

The HEM (homogeneous equilihrium model) is the fully collapsed case where both planes collapse into one
(figure 2.2•. 'tau may find the,e images to be useful in conceprualizing the basic equations and how they
fit together.

The precise solution procedure that you might employ is case dependent. At present. no general sulution
scheme exists because the nuances of specific problems are subtle and became one cannot usually afford to

ignore the dficiency and cost savings gained by tuning a method to a particular case. The economics at"
using a case specific code are changing, however, with developments in the microcomputer Held and with
the realization that total design and analysis time can often be reduced by using a less efficient but Illere
robust code. Cedes such as SOPHT and CATHENA [HAN95] ~re a direct result of this reali?..ation. The
near ternt evolution \\ill likely be ~ffected mostly by microcomputer dewlopme!lts.
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2.9 Exercises

2-18

)

I.

1

3.

For a poul-type research reactor as shown in figure 2.5. which form of the mass. momentWll and
energy conser\'ation equations are the appropriate ones to use for the following cases:
a. Pipe connecting the pool to the Hold Up Tank (HUT)
b. Mixing within the HUT
c. Pipe c:mneoting the HUT to the Heat Exchanger (HX)
d. The HX
e. Flow through the fuel assemblies.
f. The Pool
For each case. write out the appropriate equations.

for the same pool-type reactor:
a. Derive the simple steady state overall reactor core heat balance equation relating the reactor

power, core t10w and core t1T. Defend your assumptions.
b. Would the reactor coolant outlet t1T change \'eT)' much when the reactor power changes'?

Explain.
c. Derive the simple steady state equation to detemline the Heat Transpcrt System nO\\.

Defend your assumptions.
d. Would th~ reactor coclant now change very much when the reactor power or tem;>era:ure

changes? Explain.
e. Based on the ebove, in modelling which :leeds to be detennined ii, Sl. the heat transfer

situation or the hydraulic situation?

Referring to figure 2.2:
a. Explain the inter-relationship between the mass. momentum and energy ~quations and the

equation of state.
b. For the integral form. devise a simple solution scheme for the transient equations. Sho\\

what equations are being solved and how they are being solved. Flow chart :your scheme.
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Figure 2.2 The four cornerstone single phase flow equations and the flow of information between them
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Figure 2.3 The four C0merstone equations for the
full twu-t1uid model.

,,

Figure 2.4 The four cornerstone equations for the
two-t1uid model with equal pressure of the two
phases.
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Figure 2.5 Simple pool-type research reactor.
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